Lipschitz Continuity of Mahalanobis Distances and Bilinear Forms
نویسندگان
چکیده
Many theoretical results in the machine learning domain stand only for functions that are Lipschitz continuous. Lipschitz continuity is a strong form of continuity that linearly bounds the variations of a function. In this paper, we derive tight Lipschitz constants for two families of metrics: Mahalanobis distances and bounded-space bilinear forms. To our knowledge , this is the first time the Mahalanobis distance is formally proved to be Lipschitz continuous and that such tight Lipschitz constants are derived. A function is said Lipschitz continuous if it takes similar values on points that are close. More precisely, the slope of the function is bounded by a constant that is independent of the choice of points. This means that the variation of a function that is Lipschitz continuous within a certain interval is small. The Lipschitz continuity is a strong form of uniform continuity: for instance, a function that is Lipschitz continuous is also continuous, but the reverse is not necessarily true. Let's take the example of the square function: x 2 is continuous on R m but it is not Lipschitz continuous (the slope of x 2 is not bounded).
منابع مشابه
L-FUZZY BILINEAR OPERATOR AND ITS CONTINUITY
The purpose of this paper is to introduce the concept of L-fuzzybilinear operators. We obtain a decomposition theorem for L-fuzzy bilinearoperators and then prove that a L-fuzzy bilinear operator is the same as apowerset operator for the variable-basis introduced by S.E.Rodabaugh (1991).Finally we discuss the continuity of L-fuzzy bilinear operators.
متن کامل$n$-factorization Property of Bilinear Mappings
In this paper, we define a new concept of factorization for a bounded bilinear mapping $f:Xtimes Yto Z$, depended on a natural number $n$ and a cardinal number $kappa$; which is called $n$-factorization property of level $kappa$. Then we study the relation between $n$-factorization property of level $kappa$ for $X^*$ with respect to $f$ and automatically boundedness and $w^*$-$w^*$-continuity...
متن کاملArens regularity of bilinear forms and unital Banach module spaces
Assume that $A$, $B$ are Banach algebras and that $m:Atimes Brightarrow B$, $m^prime:Atimes Arightarrow B$ are bounded bilinear mappings. We study the relationships between Arens regularity of $m$, $m^prime$ and the Banach algebras $A$, $B$. For a Banach $A$-bimodule $B$, we show that $B$ factors with respect to $A$ if and only if $B^{**}$ is unital as an $A^{**}$-module. Le...
متن کاملHölder continuity of a parametric variational inequality
In this paper, we study the Hölder continuity of solution mapping to a parametric variational inequality. At first, recalling a real-valued gap function of the problem, we discuss the Lipschitz continuity of the gap function. Then under the strong monotonicity, we establish the Hölder continuity of the single-valued solution mapping for the problem. Finally, we apply these resu...
متن کاملWitt rings of quadratically presentable fields
This paper introduces an approach to the axiomatic theory of quadratic forms based on {tmem{presentable}} partially ordered sets, that is partially ordered sets subject to additional conditions which amount to a strong form of local presentability. It turns out that the classical notion of the Witt ring of symmetric bilinear forms over a field makes sense in the context of {tmem{quadratically p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1604.01376 شماره
صفحات -
تاریخ انتشار 2016